

CSCI 3920: Database Management System

2022 Winter Session				
Total Class Sessions: 25	Instructor: Staff			
Class Sessions Per Week: 6	Classroom: TBA			
Total Weeks: 4	Office Hours: TBA			
Class Session Length (Minutes): 145	Language: English			
Credit Hours: 4				

Course Description:

This course introduces students to the foundations of database management system, with focus on concepts and structures necessary to design and implement a database system. Students will have an explorations on topics including database design, the relational model, SQL, transaction management, concurrency control, and brief introduction of schema Refinement and normal forms. Detailed case studies will be applied to provide better practical skills in this field.

Learning objectives:

After finishing the course, students will be able to do the following:

- 1.Understand fundamental theories behind database management.
- 2.Understand the design methodology for databases and identify their correctness;
- 3. Apply databases and applications software to the relational model;
- 4.Use querying languages, primarily SQL, and other database supporting software;

5.Implement security policy relating to databases;

6.Gain individual and group work skills, which is needed in the future;

Course Materials:

Required Text: Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3rd, McGraw-Hill, 2002, ISBN: 0072465638.

Course Format and Requirements:

The course will take place in a computer lab and the course format including lecture, programming project, and in-class discussion. The specific topics that will be covered in the classes are listed in the course syllabus. The class period will consist of an active learning environment. During a majority of the class time, students will be actively working on problems in groups under the instructor's guides.

Attendance:

More than three unexcused absences will result in an automatic reduction in your participation

grade, for instance from A- to B+. Your active participation in the class is expected and constitutes part of your grade.

Course Assignments:

Quizzes:

There will be 6 quizzes administered through the whole semester and the LOWEST score will be dropped. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to problem sets and examples on slides. There will be no make-up quizzes.

Problem Sets

Problem sets are based on course needs, covering the following topics: The Relational Model, SQL, Internet Applications, Storing Data, Storage and Indexing, Query Evaluation and Evaluating Relational Operators.

Weekly Projects

Weekly Projects are designed to help students better understand the material we have covered, as well to give you practical programming experience. Students are expected to do your own work. Each student is expected to write his/her own programs independently. Students may, however, discuss project requirements and problem-solving strategies. Instances of copying the program of another student will result in loss of credit for that program as well as possible failure in the course by involved parties. Each project will have a due date.

Exams

Midterm Exam

There will be one midterm exam in this course. The midterm exam will be based on concepts covered in class. They will be in-class, close-book and non-cumulative.

Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes	7%
Problem Sets	8%
Weekly Projects	40%
Midterm Exam	20%
Final Exam	25%
Total	100%

Grading Scale (percentage):

A+	Α	A-	B +	B	B-	C+	С	C-	D+	D	D-	F
98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's Academic Conduct Code. Any work suspected of violating the standards of the Academic Conduct Code will be reported to the Dean's Office. Penalties for violating the Academic Conduct Code may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the Academic Conduct Code.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.

Class Assignments Topics • Overview of Database Systems \geq Managing Data File Systems VS a DBMS \geq Advantage of a DBMS Queries in a DBMS • Quiz 1 **Transaction Management** \triangleright Textbook review Structure of a DBMS \triangleright • Finish the hard copy of problem set Class 1~5 • Introduction to Database Design about the Relational Model assigned by Database Design and ER Diagrams teacher Entities, Attributes and Entity Sets \geq • Weekly Project \geq **Relationships and Relationship Sets** Additional Features of the ER Model \triangleright \triangleright Conceptual Design with the ER Model The Unified Modeling Language \geq • The Relational Model

Course Schedule:

	 Integrity Constraints over Relations Enforcing Integrity Constraints Querying Relational Data Logical Database Design: ER to Relational Introduction to Views 	
Class 6~10	 Relational Algebra and Calculus Selection and Projection Set operations Renaming Joins Division Tuple Relational Calculus Domain Relational Calculus SQL: Queries, Constraints, Triggers The Form of a Basic SQL Query UNION, INTEREST, and EXCEPT Nested Quires Aggregate Operators Null Values Complex Integrity Constraints in SQL Triggers and Activate Databases Designing Active Databases Database Application Development Assessing Databases from Applictions JDBC, JDBC Classes and Interfaces SQLJ Stored Procedures 	 Quiz 2 and 3 Textbook review Finish the hard copy of problem set about SQL, Internet Applications and Storing Data assigned by teacher Weekly Project
Class 11~15	 HTML Documents XML Documents 	 Quiz 4 Midterm

Chengdu University of Technology

	The Three-tier Application Architecture	 Textbook review 			
	The Presentation Layer	• Finish the hard			
		copy of problem set			
	• Storage and Indexing	about Storage and			
	File Organizations and Indexing	Indexing assigned			
	 Index Data Structures 	by teacher			
		• Weekly Project			
	Comparison of File Organizations				
	Storing Data: Disks and Files				
	The Memory Hierarchy				
	Redundant Arrays of Independent Disks				
	 Disk Space Management 				
	 Buffer Manager 				
	Files of Records				
	Tree-Structured Indexing				
	Hash-Bases Indexing				
	Query Evaluation				
	Algorithms for Relational Operations				
	Query Optimization				
	Alternative Plans: A Motivating Example	• Oviz 5			
	➢ What a Typical Optimizer Does	• Quiz 3			
		• Textbook review			
	External Sorting	• Finish the hard			
	Evaluating Relational Operators	copy of problem set			
Class 16~20		Evaluation and			
	 General Selection Conditions 	Evaluation and Evaluating			
	The Projection Operation	Relational			
	The Join Operation	Operators assigned			
	The Set Operations	by teacher			
	Aggregate Operations	Weekly Project			
	A typical Relational Query Optimizer				
	Translating SQL Queries into Algebra				

Chengdu University of Technology

	Estimating the Cost of a Plan	
	 Relational Algebra Equivalences 	
	 Enumeration of Alternative Plans 	
	Transaction Management	
Class 21~25	 Concurrent Execution of Transactions Lock-Based Concurrency Control Transaction Support in SQL Concurrency Control 2PL, Serializability, and Recoverability Introduction to Lock Management Concurrency Control without Locking Crash Recovery Schema Refinement and Normal Forms Functional Dependencies Properties of Decompositions Normalization Schema Refinement in Database Design 	 Quiz 6 Textbook review Weekly Project Final exam (cumulative) TBA
	• Wrap-up	